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Abstract
Brain atrophy quantification plays a fundamental role in neuroinformatics since it permits studying brain development
and neurological disorders. However, the lack of a ground truth prevents testing the accuracy of longitudinal atrophy
quantification methods. We propose a deep learning framework to generate longitudinal datasets by deforming T1-w brain
magnetic resonance imaging scans as requested through segmentation maps. Our proposal incorporates a cascaded multi-
path U-Net optimised with a multi-objective loss which allows its paths to generate different brain regions accurately.
We provided our model with baseline scans and real follow-up segmentation maps from two longitudinal datasets, ADNI
and OASIS, and observed that our framework could produce synthetic follow-up scans that matched the real ones (Total
scans=584; Median absolute error: 0.03 ± 0.02; Structural similarity index: 0.98 ± 0.02; Dice similarity coefficient: 0.95 ±
0.02; Percentage of brain volume change: 0.24 ± 0.16; Jacobian integration: 1.13 ± 0.05). Compared to two relevant works
generating brain lesions using U-Nets and conditional generative adversarial networks (CGAN), our proposal outperformed
them significantly in most cases (p < 0.01), except in the delineation of brain edges where the CGAN took the lead
(Jacobian integration: Ours - 1.13 ± 0.05 vs CGAN - 1.00 ± 0.02; p < 0.01). We examined whether changes induced
with our framework were detected by FAST, SPM, SIENA, SIENAX, and the Jacobian integration method. We observed
that induced and detected changes were highly correlated (Adj. R2 > 0.86). Our preliminary results on harmonised datasets
showed the potential of our framework to be applied to various data collections without further adjustment.
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Introduction

Brain tissue segmentation and volume quantification are
active research topics in medical image analysis as measure-
ments in these regards are employed for diagnosing brain
diseases and evaluating pathology progression and treat-
ment effectiveness (Rovira et al. 2015; Steenwijk et al.
2016; Filippi et al. 2016; Storelli et al. 2018). Although slow
shrinkage of the brain comes with ageing, changes in brain
size and shape are also a consequence of disorders, such
as schizophrenia, Alzheimer’s disease (AD), and Multiple
Sclerosis (MS) (Cover et al. 2011; Haijma et al. 2012; van
Erp et al. 2016; Rocca et al. 2017). Thus, providing medical
doctors with accurate and precise brain volume measure-
ments is essential for understanding the nature of brain
problems more rigorously.

Brain volume can be analysed at cross-sectional and
longitudinal levels (Rocca et al. 2017). In the cross-sectional
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studies, brain tissues and structures of scans acquired at a
single time-point are examined. Such an analysis can be car-
ried out using validated segmentation tools, such as FAST
(Zhang et al. 2001), FIRST (Patenaude et al. 2011), SPM
(Ashburner et al. 2012), and Freesurfer (Fischl et al. 2002),
or whole-brain atrophy quantification algorithms, such as
SIENAX (Smith et al. 2002). At a longitudinal level, atro-
phy quantification algorithms aim to find changes in brain
volume between two scans taken at different time-points.
Although SIENA (Smith et al. 2002) is a popular algorithm
for this task, there exist more (Cover et al. 2011).

Longitudinal brain MRI datasets available to the public1

are typically used for assessing repeatability and improve-
ment on statistical power. To examine the former aspect,
patients are scanned multiple times in different scanners
in short periods of time, to ensure minimal brain changes,
and brain volumetry methods are judged based on their pre-
cision. The latter aspect aims to determine whether these
approximations can discern between patients undergoing
different treatments/pathologies. Commonly, the exercise
consists of running the algorithms over samples of two pop-
ulations (e.g. dementia versus control), computing brain
volume statistics (e.g. mean and standard deviation) for both
groups, and calculating and comparing their sample sizes.
The lower the sample size per arm, the better the algorithm.
Nonetheless, this evaluation does not reflect the accuracy
of the methods. In fact, accuracy is rarely assessed since
manual segmentation is tedious, time-consuming, and error-
prone, and conventional automatic segmentation tools exhi-
bit inaccuracies (de Boer et al. 2010). Synthetic image gene-
ration could be used to address such a problem.

In medical image analysis, image generation approaches
have been applied to assess registration, estimate and
correct bias in longitudinal atrophy analyses, generate
absent modalities and augment training sets (Karaçali and
Davatzikos 2006; Ens et al. 2009; Roy et al. 2013; Sharma
et al. 2013; Khanal et al. 2017; Wei et al. 2018; Chartsias
et al. 2018; Shin et al. 2018; Frid-Adar et al. 2018; Costa
et al. 2018; Salem et al. 2019). The techniques range
from transformation models mimicking brain tissue loss to
adversarial/generative networks with problem-specific loss
functions.

Karaçali and Davatzikos (2006) devised a method for
deforming magnetic resonance (MR) scans such that the
atrophy extent corresponded to the requested one.2 The
downfall of such an approach is that resulting deformation
patterns cannot be controlled locally and follow a topology-
preserving strategy which might not permit mimicking
multiple pathologies.

1See https://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalData
2Available at http://web.iyte.edu.tr/∼bilgekaracali/VoxelVolumeMatching.
tar.gz

Roy et al. (2013) used patch-based dictionary learning
to estimate a mapping function between two imaging
sequences or image acquisition protocols,3 e.g. making it
appealing in retrospective harmonisation pipelines. How-
ever, its direct usage for atrophy generation might not be
feasible since the technique does not deform the brain but
finds matching intensity values between imaging modalities.

Chartsias et al. (2018) proposed a framework to synthe-
sise MR modalities from others using encoder-decoder
CNNs and modality-invariant latent spaces.4 Apart from the
modality synthesis, the authors showed the potential of the
framework to in-paint white matter hyperintensities onto
normal-appearing tissue and the usage of multiple losses
to achieve realistic synthesis. Salem et al. (2019) devised
a proposal, inspired by their work, to generate synthetic yet
realistic MS lesions as an image augmentation strategy.5

Evidently, a similar principle could be considered for
generating atrophy.

Shin et al. (2018) developed a proposal in which
realistic MR scans were generated from brain anatomy and
tumour segmentation masks using conditional generative
adversarial networks (CGAN). The authors showed that
their approach could be used for dealing with the lack of
diverse, sufficient, and correctly annotated data. Although
their code is not available in principle, their proposal is
inspired by the image-to-image translation with CGAN
(Isola et al. 2017).6 Up to our knowledge, these types of
architectures have not been considered for longitudinal data
generation, but they can be extended for this purpose by
giving the network the baseline scan and the segmentation
map of the follow-up acquisition.

In this work, we leverage deep learning to deform a given
T1-w scan based on the information provided through tissue
probability maps. This setting allows building longitudinal
collections for assessing atrophy quantification methods as
the tissue loss between original and generated scans is
controlled, induced, and known beforehand. Our highlights
are:

1. We present the first deep learning approach for gene-
rating synthetic atrophy change on brain MR using fully
convolutional neural networks and tissue segmentation
priors;

2. We use a multi-objective loss function to account for
intensity similarity between the expected and generated
scans at different brain regions;

3. We show qualitatively and quantitatively that our frame-
work can generate a follow-up scan given a baseline

3Available at https://www.nitrc.org/projects/image synthesis/
4Available at https://github.com/agis85/multimodal brain synthesis.
5Available at https://github.com/NIC-VICOROB/MS Lesions Generator
6Available at https://github.com/phillipi/pix2pix
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volume and a follow-up tissue segmentation probability
map accurately and better than state-of-the-art-inspired
networks;

4. We show qualitatively and quantitatively that our
framework allows training our network in one dataset
and testing it in another one without affecting the
overall performance;

5. We show quantitatively that our framework can gener-
ate varying extents of tissue loss which are detectable
by established cross-sectional and longitudinal atrophy
quantification tools.

Note that our aim is not to predict the atrophy that a patient
will suffer in a certain amount of time, but a prediction of
what would be the brain appearance given a tissue change
(segmentation). The relevance of this work is two-fold.
First, our proposal allows comparing atrophy quantification
tools quantitatively (Evaluating Induced Changes with
Brain Volumetry Methods). Second, it can serve as ground
truth for training deep learning approaches for atrophy
quantification.

The paper is organised as follows. Our proposal is descri-
bed in “Methods”. Datasets, performance metrics, experi-
ments, and results are detailed in “Experiments and Results”.
Overall discussion and future work are presented in
“Discussion”.

Methods

Our proposed atrophy generation framework is depicted in
Fig. 1. Given a baseline T1-w scan and its modified tissue
probability maps, the goal of our framework is to alter the
input such that brain tissues are altered as requested. In

such a way the atrophy between the baseline and generated
images is known in advance. We take a T1-w scan,
segment its regions using conventional tissue segmentation
tools, alter its segmentation probability maps manually or
automatically, and plug both the baseline T1-w scan and the
resulting probability maps into the generation network to
create a synthetic volume.

Note that the way the framework has been structured
is advantageous as a plethora of scans can be generated
by modifying the input tissue segmentation maps (e.g.
manually, using morphological operations, or pathology-
related deformation fields (Krebs et al. 2019)). We apply
real deformation fields to alter the original segmentation
probability maps. Further details of the approach are
discussed in the following sections.

Processing Pipeline

Our processing pipeline contemplates four essential com-
ponents: pre-processing, data preparation, processing, and
reconstruction.

Pre-processing consists of (i) skull stripping with
ROBEX (Iglesias et al. 2011), (ii) histogram matching (Nyúl
et al. 2000) to fix voxel values to a common range, and (iii)
registration to the MNI space as harmonising step. The first
step allows discarding non-relevant areas that may affect the
generation process as they are commonly hyperintense in
T1-w. We chose ROBEX since it is an unsupervised method
that delivered consistent and robust results when compared
to conventional methods. The second step allows mapping
voxel intensities to a reference range. This procedure is
essential to reduce issues regarding generalisability due
to intensity shifts (Battaglini et al. 2018). The third step
permits using the same network on various datasets as

Fig. 1 Inducing controlled tissue variations. We take a baseline T1-
w scan, segment it, alter its segmentation probability maps manually
or automatically, and plug it into the generation network to create a
synthetic volume. We apply conventional tools for tissue segmentation
and real deformation fields to alter original segmentation probabil-
ity maps. Given a baseline T1-w input image and modified tissue

probability maps, the goal of our framework is to generate a T1-w scan
in which the tissues are altered as requested. In this example, tissue
changes were requested in both cortical and periventricular regions,
e.g. lateral ventricles appear enlarged (all three views), Sylvian fissures
have been altered (axial and coronal), and the third ventricle seems
more atrophied (coronal)

section*.23
section*.23
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reducing the heterogeneity of voxel spacing may enhance
the overall performance (Bernal et al. 2019b).

Data preparation consists of splitting input volumes
into patches. For both training and testing, we extract
overlapping blocks to gather more samples, reduce block
boundary artefacts, and enforce spatial consistency (Bernal
et al. 2019b). Additionally, we discard empty or partially
empty training patches to prevent building background-
biased generators. Moreover, we opt to modify our loss
function L to nullify the penalty coming from these mis-
classified background areas. We set the minimum content
rate and overlap extent to 30% and 50%, respectively. Both
values were favourable experimentally.

In the processing step, we pass each tuple of patches
extracted from the baseline scan and modified probability
maps through the network in batches of 32 elements at a
time. We did not increase this parameter due to hardware
constraints.

We overlay neighbouring predictions to reconstruct the
synthetic volume and provide voxel-wise responses through
averaging. We run histogram matching on the reconstructed
volume to ensure intensity range similarity. No further
post-processing is required.

Generation Architecture

Our proposed network follows a cascaded U-Net construc-
tion scheme, as illustrated in Fig. 2a. First, we input the
baseline scan and its modified tissue probability maps into
three networks arranged in parallel. Each one of these net-
works accounts separately for changes in cerebrospinal fluid
(CSF), grey matter (GM), and white matter (WM). Second,
we append and pass the resulting individual latent repre-
sentations to another u-shaped network which merges them
effectively to produce the final output. In our implemen-
tation, the input and output patches have the same height,
width and depth, 32 voxels in each dimension. The over-
all cascaded network is trained end-to-end, i.e. none of the
sub-nets is trained independently.

Each U-Net module comprises a contracting path,
performing consecutive convolution and down-sampling
operations, and an expansive path, carrying successive up-
sampling and convolutions. In this way, it is possible to
output a patch with the same dimensions as the input while
reducing response times. The architecture is illustrated in
Fig. 2b. The network consists of 8 × 2 + 1 convolutional
layers—eight pairs occur in parallel, as shown in the lower
right corner of Fig. 2b—three down-sampling modules and
three backward strided convolutions. The number of kernels
doubles per contracting path layer from 24, in its shallowest,
to 27, in its latent space, and afterwards halves per expansive
path layer until the kernels are 24, in its deepest level. Strides
for down-sampling and up-convolutions are set to 2×2×2.

The U-Nets are equipped with filter banks of varied sizes
in a Network-in-Network (NIN) resembling scheme (Lin
et al. 2013; Szegedy et al. 2015). These modules,
implemented as 1 × 1 × 1-kernel layers, act similar
to embedded multi-layer perceptrons which enhance the
discriminant and representation power of the overall model.
These processing components are referred to as core
elements in Fig. 2b.

Each sub-module uses residual connections to merge
feature maps from higher-resolution layers with de-
convolved maps to preserve localisation details and improve
back-propagation (He et al. 2016). Moreover, each sub-
module combines feature maps by adding them and
not concatenating them as widespread (Brosch et al.
2016; Çiçek et al. 2016). This option is preferred to
reduce the cardinality of the trainable parameter set. Note
the different channels are processed in an early fusion
fashion (Ghafoorian et al. 2017).

The design of the sub-modules is inspired by the work of
Guerrero et al. (2018). The main differences are the dimen-
sionality of the network, the downsampling approach, and
the type and location of non-linear activation layers. First,
the network is extended to process 3D data directly. This
strategy is considered instead of a slice-by-slice approach
to exploit the nature of MRI, incorporate contextual infor-
mation from the three orthogonal planes, and produce more
consistent results. Second, strided convolutions are used
instead of max-pooling layers (Springenberg et al. 2015) to
achieve improved performance. Third, the Rectified Linear
Unit (ReLU) layers used in the original work are exchanged
for Parametric ReLU (PReLU) (Trottier et al. 2017). This
asset helps the model to cope with issues regarding the gra-
dient update and empirical performance (He et al. 2015;
Szegedy et al. 2017; Bernal et al. 2019a). Fourth, these recti-
fier layers are used after every addition of feature maps. This
choice promotes sparsity within the network, i.e. a more
resilient representation (Glorot et al. 2011).

Region-Wise Loss Function

Atrophy quantification algorithms perform tissue segmen-
tation and/or linear and non-linear registration. These
widespread practices impose three constraints on the gen-
eration: (i) tissue contrast should be sufficiently high to
be segmentation-feasible, (ii) synthesised volumes should
appear visually similar to the actual scans at intensity level,
and (iii) brain boundaries should be well-defined. We pro-
pose a four-objective loss function to fulfil these needs and
train the whole model properly. Each objective evaluates the
similarity between the expected and synthesised volume in
the CSF, GW, WM, and whole intracranial volume. Given
a real scan, y, its corresponding tissue probability maps,
sCSF , sGM, andsWM , and an approximation obtained with
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Fig. 2 High level design of the
proposed generation network.
On the left, the model receives
four inputs: a baseline T1-w
acquisition and three tissue
probability maps. This
information is processed by
three u-shaped networks, each
one specialised in generating
cerebrospinal fluid, grey matter
and white matter areas, and then
merged by a fourth network to
produced smooth
reconstructions. Our specific
implementation requires
optimising approximately 10M
parameters. On the right, each
U-Net makes use of widespread
design patterns, such as residual
connections, feature map
addition, Network-in-Network
units, and early fusion. CSF:
cerebrospinal fluid. GM: grey
matter. WM: white matter

our model, ỹ, the region-wise mean square error (RWMSE)
loss function is defined as follows

L(y, ỹ) = L(y, ỹ;
∑

ROI

sROI)

︸ ︷︷ ︸
Combined

+
∑

ROI

L(y, ỹ; sROI)

︸ ︷︷ ︸
Individual

, (1)

L(y, ỹ; s) = 1

M · N · P
M·N ·P∑

v=1

H(s(v)) · ||yv − ỹv||1, (2)

where H(a) is the discrete Heaviside step function. While
the loss for overall reconstruction is back-propagated

from the last layer of the network, the others affect the
parallel U-Nets disjointly—i.e. one loss per path. Hence,
the parallel sub-modules are in charge of generating tissue
changes and the merging network of combining them
smoothly.

This loss function requires segmentation priors of the
follow-up volume, si in Eq. 1. This information is passed
to the network to provide notions of the CSF, GM, and
WM regions and specialise each path of the network
towards generating realistic T1-w scans. This input can be
obtained using a ground truth—if available—or validated
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segmentation tools, such as FAST or SPM. In our case, we
use FAST to obtain tissue probability maps.

Generating Controlled Evaluation Environments

Once the network is trained using real baseline and follow-
up acquisitions, we use it to generate controlled atrophy
change evaluation environments, as illustrated in Fig. 1.
The process consists of gradually increasing the overall
tissue loss to establish whether our tool can generate various
extents of deformation accurately. Segmentation maps can
be altered in various ways. For instance, they could be
dilated or eroded using morphological operations. However,
this will not mimic pathological processes altering brain
tissue as atrophy changes are not necessarily even in
all brain regions. Alternatively, real atrophy deformation
fields could be used to modify the segmentation maps. We
compute real deformation fields, using FNIRT (Andersson
et al. 2007), from patients exhibiting the largest tissue loss
and use them to alter baseline tissue segmentation maps.
We multiply the resulting deformation vectors by scalars to
obtain intermediate stages.

Implementation Details

Network Training

The steps to train our model on a given dataset are as
follows. First, we split the training set into training and
validation at random—70% and 30% of the volumes,
respectively. Second, we train the network in batches of 32
(default parameter value) for a maximum of 100 epochs. At
the end of each epoch, we compute the performance on the
validation set. The training phase stops after 10 consecutive
epochs without improvement. We retain the model leading
to the lowest loss function value. We optimise the models
using the Adam (Kingma and Ba 2014) optimisation method
with an initial learning rate of 1 × 10−3, a decay of 0,
β1 = 0.9, and β2 = 0.999 (i.e. default parameter values, as
suggested in the original paper).

Network Testing

The steps to test a trained model on a given input MR
volume are as follows. First, we divide the baseline input
volume and the modified probability segmentation maps
into patches. We extract these patches from the entire input
and not from specific regions. Second, we input the patches
to the network to obtain synthetic blocks. Third, as there
is overlap between output blocks, we provide the final
segmentation through means of averaging. We rearrange all
synthetic patches to reconstruct the corresponding synthetic
volume.

Software and Hardware

We implement all the architectures from scratch in Python,
using the Keras library. We run all the experiments on
a GNU/Linux machine box running Ubuntu 16.04, with
128GB RAM. We train and test our models using a
single GeForce GTX 1080-TI GPU (NVIDIA Corp., United
States) with 11GB RAM. The developed framework is
available to download from our GitHub repository (See
information sharing statement).

Experiments and Results

In this section, we describe the considered datasets, perfor-
mance evaluation measurements, implementation details,
and experiments evaluating our proposed model and corres-
ponding results. The experiments assess loss function and
architecture selection, image generation quality, and whe-
ther induced changes are detectable by conventional brain
volumetry methods. Further details of each experiment and
the outcomes are described in the following sections.

Considered Datasets

We considered two publicly available longitudinal MRI
repositories: the Open Access Series of Imaging Studies
(OASIS) (Marcus et al. 2010) and the Alzheimer’s Disease
Neuroimaging Initiative (ADNI).7 Relevant information of
each dataset is presented in Table 1. The OASIS2 dataset
was split, for easing downloading, into two sets. We
refer to those as O1 and O2 from hereon. The former
set contains 169 pairs of baseline follow-up cases and
the second one 126. The ADNI collection contains a
plethora of longitudinal cases and, hence, we opted to filter
some cases. We used only cases of ADNI2 subjects with
Alzheimer’s disease which scans were bias field corrected
and coregistered correctly using FLIRT (Jenkinson and
Smith 2001; Jenkinson et al. 2002). Unlike in the OASIS2
case, the database was not divided in principle. Thus, we
split it into two sets, A1 and A2, with 153 and 136 pairs of
cases, respectively. For the sake of reproducibility, we attach
the list of selected cases as Supplementary material.

The distribution of relative CSF change between baseline
and follow-up scans for OASIS and ADNI2 is illustrated

7adni.loni.usc.edu The ADNI was launched in 2003 as a public-
private partnership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD). For
up-to-date information, see www.adni-info.org.

adni.loni.usc.edu
www.adni-info.org
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Table 1 Relevant information from the two considered datasets

Item OASIS2 ADNI

No. of pairs 295 289

No. of time-points (max.) 5 5

Voxel spacing 1.0 × 1.0 × 1.3 1.2 × 1.0 × 1.0

Reconstruction matrix 256 × 256 × 128 196 × 256 × 256

Bias-field corrected No Yes

Intensity standardised No No

Skull stripped No No

Sets and no. of pairs O1 : 169, O2 : 126 A1 : 153, A2 : 136

The items to describe each dataset are listed in the first column.
Although the average reconstruction matrix of the ADNI dataset is the
one indicated below, the actual dimensions vary. Pairs refer to tuples
of baseline and follow-up acquisitions

in Fig. 3. The majority of cases were concentrated within
[0.45, 0.55] for the OASIS2 dataset and [0.30, 0.50] for the
ADNI2 dataset, but ADNI contained more cases with values
above 1.00.

EvaluationMetrics

Our generation framework should produce synthetic scans
of such a quality that they resemble real ones. In this
work, we scrutinised generation quality by comparing
real and synthetic scans in terms of their perceptual
properties and their tissue segmentation and cerebral
atrophy quantification results.

Image Quality

We assessed the quality of our generations with respect to
that of real scans locally and globally. Locally, we measured

voxel-wise intensity differences between a real scan, y, and
its approximation, ỹ, using the following expression

MAE(y, ỹ) = median |y − ỹ|. (3)

The MAE approaches zero as voxel-wise differences
between y and ỹ decrease. Globally, we quantified similar-
ity between images through the structural similarity index
(SSIM) (Wang et al. 2004) as it has been found corre-
lated with the quality of perception of the human visual
system (Hore and Ziou 2010) and accounts jointly for vari-
ations in luminance, contrast, and structure (correlation):

SSIM(y, ỹ) = 2μyμỹ + c1

μ2
yμ

2
ỹ

+ c1
︸ ︷︷ ︸

Luminance

· 2σyσỹ + c2

σ 2
y σ 2

ỹ
+ c2

︸ ︷︷ ︸
Contrast

· cov(y, ỹ) + c3

σyσỹ + c3︸ ︷︷ ︸
Structure

,

(4)

where μ and σ denote the mean and standard deviation
values of the luminance of the images, cov(y, ỹ) the
covariance between y and ỹ, and ci constants to avoid a
null denominator (Hore and Ziou 2010). The SSIM values
range within zero and one, where the former indicates null
similarity white the latter implies that y and ỹ are equal.
We expected our framework to produce synthetic scans of
such perceptual quality that MAE and SSIM values tended
to zero and one, respectively.

Segmentation Agreement

Segmentation-based atrophy quantification algorithms
segment brain tissues and measure volumetric differ-
ences (Rudick et al. 1999; Jia et al. 2016) or brain boundary
shifts (Smith et al. 2002; Nakamura et al. 2014; Free-
borough and Fox 1997; Fox et al. 2000). This situation

Fig. 3 Distribution of relative
cerebrospinal fluid enlargement
among pairs of baseline and
follow-up volumes on the
OASIS and ADNI datasets. Of
note, these values may be
affected by skull stripping
results. CSF: cerebrospinal fluid
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required our framework to produce synthetic brain scans
in which tissue contrast is good enough for algorithms to
detect grey matter, white matter, and cerebrospinal fluid. To
evaluate that, we segmented brain tissues in both real and
generated scans using FAST (Zhang et al. 2001). With the
Dice similarity coefficient (DSC) (Dice 1945; Crum et al.
2006). With the DSC, we determined the extent of overlap
between the segmentation masks obtained from synthetic
scans and the ground truth used to generate them in the first
place. Given tissue probability maps for a real scan, sCSF ,
sGM , and sWM , and those for its corresponding approxi-
mation, s̃CSF , s̃GM , and s̃WM , the DSC is mathematically
expressed as

DSC (s, s̃) = 2

∑
H(s) · H(s̃)∑

H(s) · ∑ H(s̃)
, (5)

where H(a) is the discrete Heaviside step function. The
values for DSC range from zero to one, where zero
indicates null similarity between segmentation masks and
one exact agreement. We expected our framework to
produce synthetic scans such that their segmentations are
comparable to those used for generating them, i.e. DSC
values close to one.

Cerebral Atrophy

As the ultimate goal of our generation framework was
to predict the appearance of a baseline T1-w scan
after being altered as requested, we studied whether
induced variations matched the request. We considered two
atrophy quantification methods for assessing this aspect:
SIENA (Smith et al. 2002) and the Jacobian determinant
integration method (Nakamura et al. 2014)—segmentation-
based and registration-based methods, respectively. Once
our model deformed the baseline scan according to the
input probability maps, we used these two tools to quantify
potential atrophy variations between the generated and
real scans. Ideally, the percentage of whole-brain volume
change (PBVC) yielded by SIENA and the integral of
Jacobian determinants yielded by the Jacobian method
should be close to zero and one, respectively. Since these
two methods address atrophy quantification from two
different perspectives, they allowed us to verify whether
tissue variations were induced effectively and whether brain
boundaries were well-defined.

Statistical Differences

We used the Wilcoxon signed-rank test to assess statistical
significance of differences among methods. We considered
p-values below 0.01 to be statistically significant.

Architectural Directives and Loss Functions

The first experiment compared the generation quality of
four strategies: two of them inspired by relevant data
generation strategies and two of our networks optimised
with two different loss functions. Some details as follows:

(A) 3D CGAN - MSE: A network inspired by the work
of Shin et al. (2018), consisting of a U-Net generating
three brain regions and a discriminator determining
whether the generated scan is realistic enough or not.
We optimised such networks using the mean square
error (generator) and the categorical cross-entropy
(discriminator).

(B) Baseline U-Net - MSE: A network inspired by the
work of Chartsias et al. (2018) and Salem et al. (2019),
consisting of three parallel U-Nets generating three
brain regions separately and a final addition module
to merge them into a single T1-w scan. Each u-shaped
subnetwork resembles the design illustrated in Fig. 3
in (Salem et al. 2019). We optimised such a network
using a mean square error loss as in the original
papers.

(C) Cascaded U-Nets - MSE: Our proposed network, as
depicted in Fig. 2, consisting of three parallel U-Nets
generating three brain regions separately and a final
U-Net merging them into a single T1-w scan. We
optimised this network using a mean square error loss.

(D) Cascaded U-Nets - RWMSE: Our proposed network,
as depicted in Fig. 2, consisting of three parallel U-
Nets generating three brain regions separately and a
final U-Net merging them into a single T1-w scan.
We optimised this network using our proposed region-
wise mean square error, described in Eq. 1.

We implemented the aforementioned strategies and com-
pared their generation quality. We provided the networks
with baseline volumes and actual follow-up tissue segmen-
tation probability maps and evaluated the similarity between
the actual follow-up and the approximated one. We trained
all networks using the same scheme, i.e. same optimiser,
training data, training stopping policy, and machine. Data
were taken from the O2 collection and tested on the O1 set
and vice versa. The results of this experiment are presented
in Table 2.

The cascaded U-Net trained with the mean square error
loss performed significantly better than its baseline in most
cases (n = 295; Cascaded-MSE vs Baseline-MSE, p-value;
MAE: 0.08 ± 0.04 vs 0.12 ± 0.06, p < 0.01; SSIM:
0.95±0.02 vs 0.88±0.07, p < 0.01; DSC-CSF: 0.94±0.02
vs 0.92 ± 0.03, p < 0.01; DSC-GM: 0.89 ± 0.04 vs
0.88 ± 0.03, p < 0.01; PBVC: 0.26 ± 0.21 vs 2.68 ±
0.74, p < 0.01), except in terms of the segmentation of
white matter, where they both obtained similar Dice scores
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Table 2 Generation quality scores obtained with four different strategies

Train → Test n Approach Intensity Segmentation Atrophy

MAE SSIM DSC - CSF DSC - GM DSC - WM PBVC Jacobian Int

O2 → O1 126 3D CGAN - MSE 0.03 ± 0.01 0.95 ± 0.02 0.83 ± 0.16 0.69 ± 0.21 0.78 ± 0.20 2.19 ± 5.70 0.99 ± 0.01

Baseline U-Net - MSE 0.08 ± 0.04 0.90 ± 0.04 0.92 ± 0.02 0.87 ± 0.03 0.90 ± 0.02 2.60 ± 1.01 1.13 ± 0.06

Cascaded - MSE 0.05 ± 0.03 0.96 ± 0.01 0.93 ± 0.02 0.87 ± 0.05 0.91 ± 0.04 0.33 ± 0.25 1.16 ± 0.06

Cascaded - RWMSE 0.02 ± 0.01 0.99 ± 0.01 0.96 ± 0.01 0.94 ± 0.03 0.95 ± 0.02 0.27 ± 0.16 1.14 ± 0.05

O1 → O2 169 3D CGAN - MSE 0.03 ± 0.01 0.95 ± 0.01 0.80 ± 0.15 0.71 ± 0.20 0.79 ± 0.21 2.19 ± 5.70 1.00 ± 0.02

Baseline U-Net - MSE 0.15 ± 0.05 0.87 ± 0.08 0.92 ± 0.03 0.88 ± 0.02 0.91 ± 0.01 2.73 ± 0.43 1.12 ± 0.05

Cascaded - MSE 0.11 ± 0.03 0.95 ± 0.02 0.94 ± 0.02 0.90 ± 0.02 0.91 ± 0.03 0.21 ± 0.16 1.14 ± 0.05

Cascaded - RWMSE 0.01 ± 0.01 0.99 ± 0.01 0.96 ± 0.02 0.94 ± 0.02 0.95 ± 0.01 0.19 ± 0.14 1.14 ± 0.05

The results were obtained from training on O2 and testing on O1 and vice versa. The variable n represents the number of test cases. The values in
bold are significantly higher (p-value < 0.01) than the ones yielded by the other three approaches. MAE: median absolute error. SSIM: structural
similarity. DSC: Dice similarity coefficient. CSF: cerebrospinal fluid. GM: grey matter. WM: white matter. PBVC: percentage of brain volume
change. CGAN: conditional generative adversarial network. MSE: mean square error. RWMSE: region-wise mean square error

(DSC-WM: 0.91 ± 0.04 vs 0.91 ± 0.02, p = 1.00), and
Jacobian integral, where the latter outperformed the former
(Jacobian Int: 1.15 ± 0.06 vs 1.12 ± 0.6, p < 0.01). This
outcome suggested that scans generated with the cascaded
U-Nets trained with the mean square error appear more
similar to real follow-up acquisitions and exhibited better
tissue contrast than those generated with the baseline U-Net,
but brain edges were more blurred.

The use of the region-wise mean square error resulted
in significantly improved performance compared to that
obtained using the original mean square error (n =
295; Cascaded-RWMSE vs Cascaded-MSE, p-value; MAE:
0.01 ± 0.01 vs 0.08 ± 0.04, p < 0.01; SSIM: 0.99 ± 0.01 vs
0.95±0.02, p < 0.01; DSC-CSF: 0.96±0.02 vs 0.94±0.02,
p < 0.01; DSC-GM: 0.94 ± 0.03 vs 0.89 ± 0.04, p < 0.01;
DSC-WM: 0.95 ± 0.01 vs 0.91 ± 0.04, p < 0.01; PBVC:
0.22 ± 0.15 vs 0.26 ± 0.21, p < 0.01), except for the
Jacobian integral, where the difference between their scores
was not significant (Jacobian Int: 1.14 ± 0.05 vs 1.15 ±
0.06, p > 0.01). These results suggest that the proposed
loss function allows the network to generate more faithful
reconstructions versus the accustomed loss. However, the
proposed loss did not seem to help to sharpen brain edges.

Notably, the image-to-image translation conditional
adversarial network inspired by the work of Isola et al.
(2017) and Shin et al. (2018) obtained Jacobian integration
values close to one (1.00 ± 0.02), i.e. brain edges were
delineated almost perfectly according to this metric. In
this regard, this network outperformed all other approaches
significantly (p < 0.01). Nevertheless, its performance
according to the rest of the metrics was significantly lower
than our cascaded U-Net trained with the region-wise mean
square loss function (n = 295; Cascaded-RWMSE vs 3D
CGAN-MSE, p-value; MAE: 0.01 ± 0.01 vs 0.03 ± 0.01,

p < 0.01; SSIM: 0.99 ± 0.01 vs 0.95 ± 0.01, p < 0.01;
DSC-CSF: 0.96 ± 0.02 vs 0.81 ± 0.15, p < 0.01; DSC-
GM: 0.94 ± 0.03 vs 0.70 ± 0.20, p < 0.01; DSC-WM:
0.95±0.01 vs 0.79±0.21, p < 0.01; PBVC: 0.22±0.15 vs
2.19 ± 5.70, p < 0.01). Compared to the rest of the models,
scans generated using the adversarial model presented lower
tissue contrast that prevented them from being segmented
properly.

An example of generated scans using the five strategies
is presented in Fig. 4. We displayed the generation on the
case 157 of the OASIS2 dataset as it exhibited the maximum
relative CSF change in this dataset and, thus, generation
issues were visually evident. Qualitatively speaking, liter-
ature inspired strategies did not lead to appealing results.
The conditional adversarial network generated scans with
sharp yet noisy edges and inaccuracies in the lateral ventri-
cles that appear as if the model laid the ground truth over
the baseline and failed at amalgamating intensities accu-
rately. The baseline U-Net learnt identity mapping as the
only visual differences are in terms of the noise, reduced
in synthetic scans. Scans generated using our cascaded U-
Nets trained with the mean square error exhibited artefacts;
the reconstructions provided by each branch seem to be
merged in an uncoordinated way as tissues seem superim-
posed. On the contrary, both axial slices generated using
our proposed RWMSE loss function appear similar to the
expected follow-up scan as tissues were altered as expected.
Our proposal reduced speckle noise and delineated better
some structures (e.g. sub-cortical structures) compared to
the real follow-up scans, i.e. the contrast of the image was
enhanced.

Taking the aforementioned information into account, our
proposed cascaded U-Net model optimised with the region-
wise loss function evidenced improved performance both
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Fig. 4 Example of scans generated with different architectures and
loss functions. The first and second column correspond to the real
baseline and follow-up scans. From the third to the sixth column, scans
generated with the conditional generative adversarial network trained
using the mean square error loss, with the baseline U-Net trained using

the mean square error loss, with our proposed design trained with
a mean square error, and with our proposed architecture optimised
with our region-wise mean square error. CGAN: conditional generative
adversarial network. MSE: mean square error. RWMSE: region-wise
mean square error

qualitatively and quantitatively. Henceforth, we computed
our results using such a model.

Generation Quality (Same Dataset)

We ran a second experiment to evaluate the quality of the
generation of our tool. We assessed generation when synthe-
sising a scan from a baseline, i.e. we provide the network
with a baseline T1-w volume and three tissue probability
maps of the corresponding follow-up T1-w acquisition.

The results obtained by our proposal on the considered
datasets are displayed in Table 3. Our model generated vol-
umes that were quantitatively similar to the actual follow-up
scans at intensity, segmentation and atrophy levels. Regard-
ing intensity, our method yielded MAE values below 0.11

and SSIM values above 0.90. Concerning segmentation,
our tool produced images with tissue masks compara-
ble to the ones of the actual volumes as all DSC values
are above 0.80. Nevertheless, the obtained segmentation
errors were within the FAST accuracy and reproducibility
ranges (de Boer et al. 2010). Regarding the volume change
detected by atrophy quantification algorithms, our method
reported low values overall and within reproducibility
rates (Cover et al. 2011).

Our method yielded better results intensity-wise on
the OASIS set than on the ADNI one. This might be a
consequence of increased lousy skull stripping of ROBEX
on the latter set in comparison to the former. If a synthetic
scan is compared to a follow-up volume which skull has not
been entirely removed, the scores for MAE and SSIM will

Table 3 Comparison between generated and actual volumes concerning intensity, segmentation, and atrophy dissimilarities

Train → Test n Intensity Segmentation Atrophy

MAE SSIM DSC - CSF DSC - GM DSC - WM PBVC Jacobian Int

O2 → O1 169 0.02 ± 0.01 0.99 ± 0.01 0.96 ± 0.01 0.94 ± 0.03 0.95 ± 0.02 0.27 ± 0.16 1.14 ± 0.05

O1 → O2 126 0.01 ± 0.01 0.99 ± 0.01 0.96 ± 0.02 0.94 ± 0.02 0.95 ± 0.01 0.19 ± 0.14 1.14 ± 0.05

A2 → A1 153 0.03 ± 0.03 0.97 ± 0.02 0.95 ± 0.02 0.92 ± 0.02 0.96 ± 0.01 0.24 ± 0.18 1.11 ± 0.05

A1 → A2 136 0.04 ± 0.03 0.98 ± 0.01 0.95 ± 0.02 0.93 ± 0.03 0.96 ± 0.01 0.23 ± 0.16 1.13 ± 0.03

OASIS → ADNI 289 0.03 ± 0.01 0.97 ± 0.02 0.96 ± 0.01 0.94 ± 0.03 0.96 ± 0.01 0.15 ± 0.15 1.12 ± 0.04

ADNI → OASIS 295 0.02 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.94 ± 0.02 0.95 ± 0.02 0.22 ± 0.35 1.15 ± 0.06

The column n shows the cardinality of test set. The segmentation scores correspond to the DSC values computed using FAST masks. MAE:
median absolute error. SSIM: structural similarity. DSC: Dice similarity coefficient. CSF: cerebrospinal fluid. GM: grey matter. WM: white matter.
PBVC: percentage of brain volume change
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be lower than when non-brain areas have been completely
masked out.

Generation Quality (Cross-Dataset)

The third experiment consisted of evaluating the per-
formance of the proposal when training on a certain
dataset and testing on a different one (OASIS→ADNI and
ADNI→OASIS). The results are shown in Table 3 and two
cases depicted in Fig. 5. The generation per se did not seem
significantly affected as none of the intensity, segmentation,
or atrophy values differed significantly from the perfor-
mance measurements obtained when training and testing on
the same dataset. This outcome makes our proposal appeal-
ing as it shows that by pre-processing the incoming data
(e.g. harmonisation by registering to a common space and
matching intensity histograms), the network might be used
in a different domain without requiring retraining.

Evaluating Induced Changes with Brain Volumetry
Methods

The fourth experiment consisted of exploring whether
induced tissue variations could be detected by atrophy
quantification algorithms. We created the dataset as follows.
Initially, we selected ADNI subjects which exhibited the
maximum atrophy over time. The atrophy was measured as
relative enlargement of the CSF region. We computed the
deformation field between the baseline and latest follow-
up scans. Then, we multiplied the resulting deformation
vectors by scalars between zero and one to obtain
intermediate scans. We considered five scalars: 0%, 25%,

Fig. 5 Cross-dataset generation examples: an ADNI follow-up scan
using a network trained on OASIS (top) and an OASIS follow-up scan
using a network trained on ADNI (bottom)

50%, 75%, and 100%. Of note, this is an approximation to
the pathological process as we would assume that atrophy
change varies spatially at the same time in all directions.
Afterwards, we ran FAST on the baseline scans to segment
each tissue and altered the resulting tissue probability maps
using the various deformation fields. Finally, we input
each pair of baseline volume and modified tissue maps
to generate a synthetic scan. In total, we generated 216
synthetic scans.

We evaluated the capacity of our framework to generate
detectable tissue variations using four methods: three
atrophy quantification algorithms, SIENA, SIENAX, and
the Jacobian determinant integration method, and two tissue
segmentation algorithms, FAST and SPM. We computed
a robust multiple linear regression model (Li 1985) using
relative absolute volumetric differences, tissue-wise average
symmetric surface changes (Heimann et al. 2009), and Dice
coefficients (as surrogate measures for tissue displacement)
as predictor variables and detected or observed brain volume
change as a response variable. The results are shown in
Fig. 6. Overall, our induced tissue variations correlated
well with the detected volume change (adjusted correlation
coefficient R2 above 0.86). For SPM and FAST, the linear
model was close to x = y as R2 ≈ 1 and y-intercept
≈ 0. This outcome implies that the induced tissue variations
were detected correctly by conventional cross-sectional and
longitudinal atrophy quantification tools.

Discussion

In this paper, we proposed a CNN-based framework for
creating longitudinal evaluation environments given a set of
T1-w baseline scans and follow-up tissue probability maps.
Our pipeline contemplates four stages: preprocessing, data
preparation, generation and postprocessing. Initially, we
skull-stripped, intensity corrected and registered all volumes
to a common space. Then, we tiled up the baseline and
altered tissue probability maps into overlapping blocks and
passed them through our network, a cascaded u-shaped
network. Finally, once all blocks had been processed, we
reconstructed and intensity corrected the resulting synthetic
volume.

The network consisted of four processing modules:
one dedicated to generating changes on each class (namely,
CSF, GM, and WM) and the last one in charge of fusing
them. We optimised all components end-to-end using a
region-aware multi-objective loss function. We followed
state-of-the-art design patterns to devise our network.
Overall, the devised framework produced synthetic scans
accurately in terms of intensity, segmentation and tissue
volume similarity. The proposal was assessed through
four experiments exploring architecture directives and loss
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Fig. 6 Actual versus fitted
values obtained using robust
linear regression models for the
five different methods. The
models were built using the
average symmetric surface
distance, the relative absolute
volumetric difference, and Dice
coefficients between original
and deformed tissue maps as
predictor variables and detected
volume change as response
variable. Data points and
regression lines are represented
by empty circles and red lines,
respectively
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functions, generation quality when training the network on
a particular dataset and testing on the same or different one,
and the ability of our framework to generate acceptable and
detectable changes.

The first experiment compared our proposal against two
literature-inspired networks based on the work on latent
space representations using U-Nets of Chartsias et al. (2018)
and Salem et al. (2019) and the label-to-image transla-
tion conditional generative adversarial network described
by Shin et al. (2018). The assessment consisted of gener-
ating follow-up scans using baseline data and real follow-
up tissue segmentation maps and measuring the similarity
between the generated and real scans in terms of their per-
ceptual properties, their segmentation results, and their atro-
phy extents. Quantitatively, our cascaded U-Net optimised

with our region-wise mean square error objective function
outperformed both state-of-the-art approximations in most
cases, except in delineating brain edges sharply where the
conditional generative adversarial network took the lead.
Qualitatively, scans generated with our proposal did not
exhibit visual artefacts unlike those synthesised with other
approximations, as illustrated in Fig. 4. Having the afore-
mentioned aspects in mind, we chose our proposal over the
considered literature-inspired models.

The second experiment gauged the capacity of our
proposal to generate synthetic follow-up scans which were
similar to the actual images when training and testing on
the same domain. The similarity was evaluated regarding
intensity using MAE and SSIM, tissue segmentation
mask overlap using FAST and DSC, and atrophy change
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using SIENA and the Jacobian integration method. The
experiment considered four collections: two from the
OASIS and two from the ADNI. In all of them, our proposal
yielded high similarity scores. We observed that skull
stripping errors resulted in increased dissimilarity scores, as
indicated previously in the literature (Nakamura et al. 2018).
Nonetheless, all the values were within the reproducibility
ranges reported in the literature.

The third experiment explored whether the framework
could be used in unseen and different data collections. We
trained our network on a particular selection (e.g. OASIS2)
and tested on another one (e.g. ADNI) and vice versa to
determine how robust was the entire framework to these
sort of variations. Our preliminary results showed that our
framework may cope with this situation without affecting its
performance considerably and without requiring additional
adjustments, but further testing in this regard is needed.
Evidently, this outcome is appealing as our ultimate goal
is to apply our pipeline to datasets with possibly varying
acquisition parameters.

The fourth experiment examined whether conventional
tools detected synthetically induced changes. This is key
in this research as our primary goal is to create high-
quality synthetic scans for which tissue variations (loss)
with respect to the baseline scans are known beforehand.
We used real tissue displacement vectors to alter baseline
segmentation masks, input them into our framework, and
gauged changes using SIENA, SIENAX, the Jacobian
integration method, SPM, and FAST. All changes detected
by these five tools highly correlate with our induced chan-
ges (Adj. R2 values above 0.86), showing common tissue
segmentation and volumetry methods can detect brain alte-
rations generated by our proposal. Note that even algorithms
that were not used at any point within our framework
correlated with the induced changes.

A direct and fair comparison with other works in the area
is not straightforward as inputs and generation mechanisms
vary. For example, in (Karaçali and Davatzikos 2006), the
tool is provided with an MR scan and a number indicating
the desired level of expected tissue loss and the tool outputs
another scan in which the brain volume has been altered to
match the requested value. The deformation of the volume
follows the topology of the brain rather than a pathology-
oriented pattern per se. Khanal et al. (2017) proposed a tool
for prescribing local atrophy changes given segmentation
and atrophy maps, in which the user indicates modifiable
and not modifiable regions and the expected degree of
atrophy, respectively. We did not compare to their work
since we would need to build both maps appropriately
and accurately. Thus, we compared our proposal against
networks inspired by previous works on image and lesion
synthesis (Chartsias et al. 2018; Salem et al. 2019) and data
augmentation (Shin et al. 2018) since their code was either

publicly available and/or used established and well-known
strategies.

The motivation behind our proposal is two-fold. First, we
aim to generate controlled environments to evaluate atrophy
quantification strategies. Following the urgent challenges in
GM atrophy measurement exposed by Amiri et al. (2018),
pipelines could be compared under the same settings, and
their pros and cons could be adequately analysed using
our tool. This would be a way to extend the clinical
validation of existing tools. Second, we target using the
deep learning power to craft a more precise and accurate
method for measuring tissue loss. As it is well-known in
the literature, deep learning has outperformed traditional
machine learning methods in scenarios where lots of data
are available. Thus, we could train networks to achieve
improved measurements using our tool.

Our proposal exhibits limitations regarding segmenta-
tion, model assumptions, domain dependence, and bias.
First, it is well-known that the segmentation performance
of FAST in basal ganglia is not accurate enough. Although
we did not observe problems in this regard (see Figs. 4
and 5), better segmentation strategies need to be consid-
ered. Second, unlike model-based proposals (Karaçali and
Davatzikos 2006), there are no assumptions on how tis-
sues are altered to match the input segmentation maps.
On the one hand, this favours the flexibility of the gen-
eration scheme. On the other hand, it does not follow
a specific pathology-oriented deformation strategy. Third,
the core network may produce undesired outcomes when
the intensity range of an input scan differs considerably
from the training intensity interval. Nonetheless, this issue
was mitigated by performing intensity standardisation and
registering input scans to the training space. Fourth, the
current strategy for generating controlled environments
requires image segmentation and registration, i.e. generation
is biased towards them. Nonetheless, we observed that our
method could generate tissue changes that were highly cor-
related with SPM, a method that was not considered in the
training pipeline.

In the future, we plan to use deep learning to learn
pathology specific tissue deformations using a conditional
generative network and add this module to our framework.
This will open the doors to developing novel tools that can
be later used in investigating atrophy-related pathologies.
Additionally, the image-to-image translation conditional
generative adversarial network proposed by Isola et al.
(2017) generates edges that are of better quality than
those generated with our current proposal. We plan to
implement and evaluate the effectiveness of other generative
adversarial models to further decrease the error that our
current proposal presents. Moreover, we aim to devise a
fully deep learning-based framework to provide medical
doctors with robust and reliable longitudinal atrophy
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measurements. To encourage other researchers to use the
implemented framework, we released a publicly accessible
version of it in our GitHub repository (See information
sharing statement).

Information Sharing Statement

We implemented our framework using the Python pro-
gramming language and the Keras library. We made our
implementation publicly available at our GitHub repository:
github.com/NIC-VICOROB/atrophy-generation. We listed
all installation requirements in the README.md file in
the same repository. Most dependencies needed to run our
framework can be installed using “pip”, except for FSL
(fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation) and ROBEX
(www.nitrc.org/projects/robex). The original OASIS and
ADNI datasets are available to download from www.
oasis-brains.org/ and http://adni.loni.usc.edu/, respectively.
We attached the list of selected cases from the ADNI dataset
as Supplementary material.

Acknowledgements Data used in the preparation of this article were
[in part] obtained from the OASIS dataset: Longitudinal: Principal
Investigators: D. Marcus, R, Buckner, J. Csernansky, J. Morris; P50
AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20
MH071616, U24 RR021382. Data collection and sharing for the
ADNI project was funded by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (National Institutes of Health Grant U01 AG024904)
and DOD ADNI (Department of Defense award number W81XWH-
12-2-0012). ADNI is funded by the National Institute on Aging,
the National Institute of Biomedical Imaging and Bioengineering,
and through generous contributions from the following: AbbVie,
Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation;
Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals,
Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche
Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE
Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research
& Development, LLC.; Johnson & Johnson Pharmaceutical Research
& Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.;
Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack
Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.;
Piramal Imaging; Servier; Takeda Pharmaceutical Company; and
Transition Therapeutics. The Canadian Institutes of Health Research
is providing funds to support ADNI clinical sites in Canada. Private
sector contributions are facilitated by the Foundation for the National
Institutes of Health (www.fnih.org). The grantee organisation is the
Northern California Institute for Research and Education, and the
study is coordinated by the Alzheimer’s Therapeutic Research Institute
at the University of Southern California. ADNI data are disseminated
by the Laboratory for Neuro Imaging at the University of Southern
California.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

Supplementary Information The online version contains supplemen-
tary material available at (10.1007/s12021-020-09499-z)

References

Amiri, H., de Sitter, A., Bendfeldt, K., Battaglini, M., Wheeler-
Kingshott, C.A.G., Calabrese, M., Geurts, J.J., Rocca, M.A.,
Sastre-Garriga, J., Enzinger, C., et al. (2018). Urgent challenges
in quantification and interpretation of brain grey matter atrophy
in individual MS patients using MRI. NeuroImage: Clinical, 19,
466–475.

Andersson, J.L., Jenkinson, M., Smith, S., et al. (2007). Non-linear
registration aka Spatial normalisation FMRIB Technial Report
TR07JA2. FMRIB Analysis Group of the University of Oxford.

Ashburner, J., Barnes, G., Chen, C. (2012). SPM12 Manual. www.fil.
ion.ucl.ac.uk (Online; Accessed 21 Jun 2018.

Battaglini, M., Jenkinson, M., De Stefano, N., Initiative, A.D.N.
(2018). SIENA-XL for improving the assessment of gray and
white matter volume changes on brain MRI. Human Brain
Mapping, 39(3), 1063–1077.

Bernal, J., Kushibar, K., Asfaw, D.S., Valverde, S., Oliver, A., Martı́,
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